
IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 5, MAY 2014 573

A Highly Parallel Framework for HEVC Coding Unit
Partitioning Tree Decision on Many-core Processors
Chenggang Yan, Yongdong Zhang, Senior Member, IEEE, Jizheng Xu, Senior Member, IEEE, Feng Dai, Liang Li,

Qionghai Dai, Senior Member, IEEE, and Feng Wu, Fellow, IEEE

Abstract—High Efficiency Video Coding (HEVC) uses a very
flexible tree structure to organize coding units, which leads to a
superior coding efficiency compared with previous video coding
standards. However, such a flexible coding unit tree structure also
places a great challenge for encoders. In order to fully exploit
the coding efficiency brought by this structure, huge amount of
computational complexity is needed for an encoder to decide the
optimal coding unit tree for each image block. One way to achieve
this is to use parallel computing enabled by many-core proces-
sors. In this paper, we analyze the challenge to use many-core
processors to make coding unit tree decision. Through in-depth
understanding of the dependency among different coding units,
we propose a parallel framework to decide coding unit trees. Ex-
perimental results show that, on the Tile64 platform, our proposed
method achieves averagely more than 11 and 16 times speedup for
1920x1080 and 2560x1600 video sequences, respectively, without
any coding efficiency degradation.

Index Terms—CU partitioning tree decision, HEVC, many-core
processors, parallel framework.

I. INTRODUCTION

H IGH EFFICIENCY VIDEO CODING (HEVC) is
the state-of-the-art video coding standard [1]–[4]. Com-

pared with H.264/AVC, HEVC provides a similar reconstructed
quality with about half of bitrate [5], which largely benefits
from a highly flexible hierarchy of HEVC coding unit (CU)
partitioning [6]. In HEVC, each frame is divided into non-over-
lapping coding tree units (CTUs), which can be recursively split

Manuscript received December 23, 2013; accepted March 04, 2014. Date of
publication March 11, 2014; date of current version March 18, 2014. This work
was supported by National Key Technology Research and Development Pro-
gram of China under Grant 2012BAH06B01, and by the National Nature Sci-
ence Foundation of China under Grants 61272323, 61102101, and 61379084 .
The work of C. Yan was performed during his internship at Microsoft Research
Asia. The associate editor coordinating the review of this manuscript and ap-
proving it for publication was Prof. Oscar C. Au.
C. Yan is with the Key Lab of Intelligent Information Processing of Chinese

Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing
100190, China, the Department of Automation, Tsinghua University, Beijing
100084, China, and also with the University of Chinese Academy of Sciences,
Beijing, 100049, China.
Y. Zhang, F. Dai, and L. Li are with the Key Lab of Intelligent Informa-

tion Processing of Chinese Academy of Sciences (CAS), Institute of Computing
Technology, CAS, Beijing 100190, China (email: zhyd@ict.ac.cn).
J. Xu and F. Wu are with Microsoft Research Asia, Beijing 100190, China.
Q. Dai is with the Department of Automation, Tsinghua University, Beijing

100084, China.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LSP.2014.2310494

into smaller coding units (CUs) by using a generic quad-tree
partitioning structure. A CU is the basic unit for video coding,
processing and splitting. Thus, for a CTU, the CU partitioning
tree (CUPT) controls how a CTU is coded with CUs with
variable block sizes and coding modes, which significantly
influence the coding efficiency. The price to be paid for higher
coding efficiency is higher computational complexity. To de-
cide the optimal CUPT greatly increases the search domain and
the computational complexity of rate-distortion optimization
(RDO) at the encoder [7]–[9].
To speed up the decision process of CUPT, many researchers

have tried to reduce the search space by avoiding searching
the full branches of the quad-tree [10]. In order to guarantee
the coding efficiency, many branches of the quad-tree can’t be
skipped and the speedup is no more than two times. Meanwhile,
many researchers only consider the RD-based intra mode se-
lection. However, inter mode selection is much more time-con-
suming, which cannot be ignored.
Many-core processors are good candidates for speeding up

compression algorithms, but only in the case that compression
algorithms can be highly parallelized [11]–[16]. Efficient par-
allelization of CUPT decision (CUPTD) on many-core proces-
sors is challenging, because CUPTD has complicated data de-
pendencies which provides insufficient degree of parallelism for
so many cores. If CUPTD isn’t extensively parallelizable, cores
will be left unused and performance might suffer.
We propose a highly parallel framework for CUPTD. Firstly

we analyze the dependencies among neighboring CTUs within
the same frame and use the directed acyclic graph (DAG)-based
order to parallelize CTUs as described in our previous work
[14]. Then we analyze the dependencies in CU-level within the
same frame:
• There exist completely independent CUs (CICUs), which
have no data dependencies on other CUs within the same
CTU.

• There exist partially independent CUs (PICUs), which
have no data dependencies on other CUs when related
CUs have been processed within the same CTU.

In order to further increase the degree of parallelism over-
head, we process the CICUs at the beginning of processing each
CTU and the PICUs when their related CUs have been pro-
cessed, which exploit the implicit CU-level parallelism. To the
best of our knowledge, it is the first time to have a parallel so-
lution to CUPTD.
Our testing platform is Tile64, which is a member of TILERA

many-core processor family [17]. Experiments demonstrate that

1070-9908 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

574 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 5, MAY 2014

Fig. 1. Flexible hierarchy of unit representation.

our proposed method significantly saves more time than the de-
fault encoding scheme in HM 7.0.
The remainder of this letter is organized as follows. Section II

gives a review of the CUPTD. Section III presents the proposed
parallel framework. The experimental results are elaborated in
Section IV. Finally, Section V concludes this letter.

II. HEVC CUPTD

Hierarchy of HEVC CUPTD has been proved effective [6].
As shown in Fig. 1, each frame in HEVC is divided into CTUs,
which can be recursively split into a quad-tree of smaller CUs.
Regions of different sizes can be better coded by using variable
sizes of CUs. However, Hierarchy of HEVC CUPTD greatly
increases the search domain and the computational complexity
of RDO at the encoder. For example, consider an image of

pixels. In H.264/AVC, the size of macroblock is
fixed and there is only one way to split the frame. But in HEVC,
if the CTU size is fixed as and the maximum quad-tree
depth is 4, we have to search
CU branches in the frame. Video coding has been restricted in
many fields because of its high complexity [11]–[13]. As a re-
sult, it’s important to accelerate HEVC, especially CUPTD.
Efficient parallelization of HEVCCUPTD onmany-core pro-

cessors is challenging, because CUPTD has complicated data
dependencies. For RD-based intra prediction coding tools, the
coding structure follows the overall architecture of the codec.
Images are split into CU, prediction unit (PU) and transform
units (TU). CU is used to separate the intra and inter coded
blocks. As shown in Fig. 1, CUs can be further split into two PU
partition modes for intra prediction. CUs can also be split into
TUs by using a generic quad-tree segmentation structure. In-
stead of applying the intra coding at PU level, HEVC conducts
intra prediction in TU level sequentially, which always utilize
the nearest neighboring reference samples from the already re-
constructed TUs. There are only nine intra modes available for

luma blocks in H.264/AVC [18]. To enhance the coding
efficiency of HEVC, HEVC provides as many as 35 prediction
modes [1]. All the prediction modes utilize the same basic set
of reference samples from above and to the left of the image
block. Just like H.264/AVC, left, above, and above-right neigh-
boring reconstructed sample will be used for intra prediction.

What’s more, below-left neighboring reconstructed samples are
rarely available in the traditional macroblock based H.264/AVC
coding structure, but they are also used for HEVC intra pre-
diction because hierarchical coding architecture makes them
availablemore frequently. For RD-based inter prediction coding
tools, HEVC adopts motion vector competition mechanism, that
the best motion vector predictor is selected from a given ad-
vanced motion vector prediction candidate list (AMVPCL). As
shown in Fig. 1, CUs can be further split into eight PU par-
tition modes for inter prediction. Each PU has AMVPCLs for
every available reference frame. The AMVPCL is composed of
both spatial candidates and temporal candidates. Spatial can-
didates are classified into top and left categories, which need
the motion information of neighboring left, left-down, upper,
upper-left and upper-right PUs. AMVPCL derivation process
has to be done sequentially on both the encoder and the de-
coder sides. According to RD-based intra/inter prediction, we
find that the search of the current CU branch may have data de-
pendencies on its neighboring left, left-down, upper, upper-left
and upper-right CU branches.

III. HIGHLY PARALLEL FRAMEWORK FOR HEVC CUPTD

In this section, we will present the proposed parallel frame-
work. Firstly, we will formulate the problem of HEVC CUPTD.
Thenwewill analyze the dependencies in CTU-level and use the
directed acyclic graph (DAG)-based order to parallelize CTUs
as described in our previous work [14]. After that, we exploit
the implicit CU-level parallelism.

A. Problem Formulation

Each frame is divided into non-overlapping CTUs, where
denotes -th CTU within the frame. Let denotes the max-
imum depth of the CTU. Let denotes a parameter for de-
ciding the minimumCU size. The minimumCU size is

and the maximum CU size is . The CU
at depth , where , is of size

. Fig. 2 shows an example of the formulation for
HEVC CUPTD. In Fig. 2, and , the minimum
CU size is and the maximum CU size is . Each
CU at depth is denoted by . indexes the loca-
tion of the root CTU within the frame, .
We use to denote . We denote to be the
best RD cost computed for the CU, , assuming that is
not split into sub-CUs. We also denote to be the best
RD cost computed for the CU, , without any restriction on
whether it is split or not. HM-7.0 encoder optimizes the RD cost
for by using the following recursive relationship (see (1),
shown at the bottom of the page), where and represents
the overhead of not splitting the CU and splitting the CU re-
spectively. HM-7.0 encoder tries to compute the best RD cost
starting from .

(1)

YAN et al.: A HIGHLY PARALLEL FRAMEWORK FOR HEVC CODING UNIT PARTITIONING TREE DECISION ON MANY-CORE PROCESSORS 575

Fig. 2. Example of the formulation for HEVC CUPTD, where each CTU
is recursively split into sub-CUs .

B. CTU-Level Parallelism

In this section, we will analyze the data dependencies among
neighboring CTUs. When computing the of the cur-
rent CTU , the of the current CTU’s neighboring
left-down CTU isn’t computed yet. So the current CTU
has no data dependency on its adjacent left-down CTU. Mean-
while, the best RD costs in the current CTU’s neighboring left,
upper, upper-left, and upper-right CTUs are computed. The cur-
rent CTU has data dependencies on its neighboring left, upper,
upper-left, and upper-right CTUs. When processing the current
CTU, the left, upper, upper-left and upper-right CTUs should
have been completed processed. After analyzing the data de-
pendencies among neighboring CTUs, we use the same DAG-
based order as described in our previous work [14] to parallelize
CTUs, which exploits the CTU-level parallelism.

C. CU-Level Parallelism

After using the DAG-based order to parallelize the CTUs,
we exploit the implicit CU-level parallelism within each CTU.
On the basis of analyzing the Data dependencies among neigh-
boring CTUs, we define CICU and PICU, which satisfy certain
conditions and thus can provide more parallel flexibility. When
computing the of the current CTU , the left, upper,
upper-left and upper-right CTUs should have been completely
decided RD-based inter/intra modes. CICUs meet the following
conditions:
• The CICU’s left boundary and CTU’s left boundary
overlap.

• The CICU’s upper boundary and CTU’s upper boundary
overlap.

The current CU at depth () is CICU if the fol-
lowing condition satisfies:

(2)

The of CICU has no dependency on other CUs
within the same CTU. For example, as shown in Fig. 2, CU
and meet requirements of CICU. Their neighboring re-
lated CTUs have been processed. The and
can be computed at first in parallel.
We further define PICUs, which meet the following condi-

tions:
• PICUs don’t meet requirements of CICUs.
• The PICU’s left boundary andCTU’s left boundary overlap
or the of neighboring left largest size CU has
been computed.

• The PICU’s upper boundary and CTU’s upper boundary
overlap or the of neighboring upper and upper-
right largest size CUs have been computed.

Within the same CTU, when the CICU have been processed
in parallel at first, PICU will appear and can be processed in
parallel. For example, as shown in Fig. 2, when the
of the CU has been computed, CU and meet
the requirements of PICU. The and can
be computed in parallel. So the of PICU can be
computed when their related CU have decided how to split.

IV. EXPERIMENTAL RESULTS

A. Input Stream and Environment Conditions

To compare our proposed method with serial execution, we
adopt an encoder migrated from HEVC reference software
HM7.0 [19] without any optimization. The input videos in our
experiments contain a list of standard test sequences with 64
frames. We select the profile ‘randomaccess_main’. The default
encoding test conditions are specified in [19]. The experiment
platform of this letter is based on Tile64, which is a member of
TILERA many-core platform and contains 64 processing cores
[17]. In order to avoid the impact of special platform, we do
not use any Tile64 platform-dependent optimizations.

B. Speedup Analysis

Fig. 3 shows the speedup of CTU-level parallelism and our
proposed method compared to serial execution using 64 cores.
The speedup of our proposedmethod and CTU-level parallelism
can be calculated as follows:

(3)

(4)

where , and are respectively the
CUPTD time of serial execution, CTU-level parallelism and
proposed method. Table I shows the speedup of our proposed
method compared to serial execution using 64 cores. From
Fig. 3 and Table I, We get two major observations:

576 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 5, MAY 2014

Fig. 3. The speedup of CTU-level parallelism and our proposed method com-
pared to serial execution using 64 cores, .

TABLE I
THE SPEEDUP OF OUR PROPOSED METHOD COMPARED TO SERIAL EXECUTION

USING 64 CORES

• As the resolution of frame increases, the speedup of CTU-
level parallelism and our proposed method increases be-
cause the degree of parallelism increases [14].

• Our proposed method accelerates a lot more than serial
execution and CTU-level parallelism. Compared with se-
rial execution, our proposed method achieves averagely
more than 11 and 16 times speedup for 1920x1080 and
2560x1600 video sequences, respectively.

V. CONCLUSIONS

HEVC CUPTD greatly increases the computational com-
plexity at the HM-7.0 encoder. We propose an efficient parallel
framework for HEVC CUPTD on many-core processors.
After analyzing the dependencies among neighboring CTUs
within the same frame, we firstly use the DAG-based order to

parallelize CTUs as described in our previous work [14]. In
order to further increase the degree of parallelism overhead, we
process the CICUs at the beginning of processing each CTU
and the PICUs when their related CUs have been processed,
which exploit the implicit CU-level parallelism. Experiments
conducted on Tile64 platform demonstrate that our method
saves more time than the default encoding scheme in HM 7.0.

REFERENCES

[1] G. J. Sullivan, J.-R. Ohm,W.-J. Han, and T.Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[2] R. Sjöberg, Y. Chen, A. Fujibayashi, M. M. Hannuksela, J.
Samuelsson, T. K. Tan, Y.-K. Wang, and S. Wenger, “Overview
of hevc high-level syntax and reference picture management,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1858–1870,
Dec. 2012.

[3] M. Zhou, W. Gao, M. Jiang, and H. Yu, “HEVC lossless coding and
improvements,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no.
12, pp. 1839–1843, Dec. 2012.

[4] C. Yeo, Y. Tan, and Z. Li, “Dynamic range analysis in HEVC residual
coding and reconstruction,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 23, no. 7, pp. 1131–1136, Jul. 2013.

[5] J. Ohm, G. J. Sullivan, and H. Schwarz et al., “Comparison of the
coding efficiency of video coding standards—including high efficiency
video coding (HEVC),” IEEE Trans. Circuits Syst. Video Technol., vol.
22, no. 12, pp. 1669–1684, Dec. 2012.

[6] Y. Yuan, I.-K. Kim, X. Zheng, L. Liu, and X. Cao et al., “Quadtree
based non-square block structure for inter frame coding in HEVC,”
IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp.
1707–1719, Dec. 2012.

[7] J. Vanne, M. Viitanen, T. D. Hamalainen, and A. Hallapuro, “Com-
parative rate-distortion-complexity analysis of HEVC and AVC video
codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp.
1885–1898, Dec. 2012.

[8] F. Bossen, B. Bross, K. Sühring, and D. Flynn, “HEVC complexity and
implementation analysis,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 12, pp. 1685–1696, Dec. 2012.

[9] G. Correa, P. Assuncao, L. Agostini, and L. A. da Silva Cruz, “Per-
formance and computational complexity assessment of high-efficiency
video encoders,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no.
12, pp. 1899–1909, Dec. 2012.

[10] L. Shen, Z. Liu, and X. Zhang et al., “An effective CU size decision
method for HEVC encoders,” IEEE Trans. Multimedia, vol. 15, pp.
465–470, Jan. 2013.

[11] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux,
and T. Schierl, “Parallel scalability and efficiency of HEVC paralleliza-
tion approaches,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1827–1838, Dec. 2012.

[12] Z. Xiao and B. M. Baas, “A 1080p H.264/AVC baseline residual en-
coder for a fine-grained many-core system,” IEEE Trans. Circuits Syst.
Video Technol., vol. 21, no. 7, pp. 890–902, Jul. 2011.

[13] Y. Zhang et al., “Efficient parallel framework for H.264/AVC de-
blocking filter on many-core platform,” IEEE Trans. Multimedia, vol.
14, no. 3, pp. 510–524, 2012.

[14] C. Yan et al., “Highly parallel framework for HEVCmotion estimation
on many-core platform,” in Data Compression Conf., Snowbird, UT,
2013, pp. 63–72.

[15] C. Yan et al., “Parallel deblocking filter for HEVC on many-core pro-
cessor,” Electron. Lett., accepted for publication.

[16] C. Yan et al., “Parallel deblocking filter for H.264/AVC implemented
on Tile64 platform,” in Int. Conf. Multimedia and Expo (ICME),
Barcelona, Spain, 2011, pp. 1–6.

[17] S. Bell et al., “TILE64-Processor: A 64-core SoC with mesh,” in
IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp.
88–598.

[18] T. Wiegand, G. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[19] F. Bossen, “Common test conditions and software reference configu-
rations,” in JCTVC-I1100, Apr. 2012.

