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WBSMDA: Within and Between 
Score for MiRNA-Disease 
Association prediction
Xing Chen1,2,*, Chenggang Clarence Yan3,4,*, Xu Zhang5, Zhu-Hong You6, Lixi Deng7,8, 
Ying Liu9, Yongdong Zhang10 & Qionghai Dai4

Increasing evidences have indicated that microRNAs (miRNAs) are functionally associated with the 
development and progression of various complex human diseases. However, the roles of miRNAs in 
multiple biological processes or various diseases and their underlying molecular mechanisms still have 
not been fully understood yet. Predicting potential miRNA-disease associations by integrating various 
heterogeneous biological datasets is of great significance to the biomedical research. Computational 
methods could obtain potential miRNA-disease associations in a short time, which significantly reduce 
the experimental time and cost. Considering the limitations in previous computational methods, 
we developed the model of Within and Between Score for MiRNA-Disease Association prediction 
(WBSMDA) to predict potential miRNAs associated with various complex diseases. WBSMDA could 
be applied to the diseases without any known related miRNAs. The AUC of 0.8031 based on Leave-
one-out cross validation has demonstrated its reliable performance. WBSMDA was further applied to 
Colon Neoplasms, Prostate Neoplasms, and Lymphoma for the identification of their potential related 
miRNAs. As a result, 90%, 84%, and 80% of predicted miRNA-disease pairs in the top 50 prediction 
list for these three diseases have been confirmed by recent experimental literatures, respectively. 
It is anticipated that WBSMDA would be a useful resource for potential miRNA-disease association 
identification.

MicroRNAs (miRNAs) are one kind of endogenous non-coding RNAs (ncRNAs) with the length of 20 ~ 25 nucle-
otides. They could bind to the 3′  untranslated regions (UTRs) and suppress the expression of their target mes-
senger RNAs (mRNAs) at post-transcriptional level through sequence-specific base pairing1–4. However, some 
studies have reported that miRNAs could also function as positive regulators5,6. Until now, thousands of miRNAs 
have been discovered in the eukaryotic organisms ranging from nematodes to humans based on various experi-
mental methods and computational models7,8.

Accumulating studies have shown that miRNAs play a critical role in many important biological processes, 
including cell proliferation9, development10, differentiation11, and apoptosis12, metabolism13,14, aging13,14, signal 
transduction15, viral infection11 and so on. In particular, it was observed that miRNAs with similar sequences 
or secondary structures tend to play roles in similar biological processes16. Furthermore, the dysregulations 
of the miRNAs have been confirmed to be associated with the development and progression of various com-
plex human diseases17–19. Recent plenty of studies have found that miRNAs are associated with various can-
cers or cancer related processes20. For example, mir-335 and mir-31 are considered to be the robust inhibitors 
in breast cancer21–23. Another example is mir-21, whose upregulation could promote hormone-dependent and 
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hormone-independent growth in prostate cancer24,25. What’s more, mir-101 was found to be involved in human 
breast cancer by targeting Stathmin1, and mir-185 was found to be involved in human breast carcinogenesis by 
targeting Vegfa26,27. The levels of mir-27b and miR-134 were found significantly lower in lung tumors than normal 
tissue, which suggested that they are associated with lung cancer28. Identifying disease-related miRNAs could 
benefit disease diagnosis, treatment, and prevention29–31. However, using experimental methods to identify the 
associations between miRNAs and diseases is demanding and costly. As more and more biological datasets are 
available, it would be an effective way to develop computational methods to uncover the potential associations 
between miRNAs and diseases32–39.

In the past few years, significant progresses have been made in potential miRNA-disease association iden-
tification. Various computational methods have been developed from network and systems biology points of 
view in recent years, which could be further divided into the similarity measure-based approaches and machine 
learning-based approaches. Furthermore, most of computational methods were developed based on the assump-
tion that functionally similar miRNAs usually have connection with phenotypically similar diseases40–42.

By integrating miRNA functional interactions, disease phenotype similarities, and known miRNA-disease 
associations, Jiang et al.30 developed a hypergeometric distribution-based computational model that prioritized 
the entire microRNAome for the investigated diseases to predict potential disease-associated miRNAs. This com-
putational model strongly relies on predicted miRNA-target interactions which have a high rate of false-positive 
and high false-negative results. Furthermore, Xuan et al.43 proposed a method called HDMP based on weighted 
k most similar neighbors to predict disease-related miRNA candidates. They calculated the functional similarity 
between miRNAs from the information content of disease terms and phenotype similarity between diseases and 
considered the miRNA family and the cluster information to recalculate miRNA functional similarity by assign-
ing higher weight to members of miRNA family or cluster. However, the determination of the value of the number 
of neighbors will have a great influence on the performance of HDMP. Local network similarity measure has been 
adopted in above two studies, which only considered miRNA neighbor information in the scoring system. In 
recent studies, global network similarity measure has demonstrated their more reliable performance than local 
network similarity measure-based ones44–46. Based on the assumption that global network similarity measures are 
better than traditional local network similarity measures in uncovering potential associations between diseases 
and miRNAs, Chen et al.37 developed the model of Random Walk with Restart for MiRNA–Disease Association 
(RWRMDA) to infer potential miRNA–disease interaction by implementing random walk on the miRNA func-
tional similarity network, which didn’t rely on the predicted miRNA-target interactions. RWRMDA has obtained 
a good predictive accuracy, but this model is not applicable for diseases without any known associated miRNAs.

According to the assumption that if miRNAs are implicated in a specific tumor phenotype, their target genes 
will be aberrantly regulated, Xu, et al.47 constructed a heterogeneous miRNA-target dysregulated network, 
extracted four network topological features, and developed Support Vector Machine (SVM)-based Supervised 
classifier to distinguish positive disease related miRNAs from negative ones. However, it is difficult and even 
impossible to obtain negative disease-related miRNAs. Based on the framework of regularized least squares, Chen 
et al.35 further proposed a semi-supervised method Regularized Least Squares for MiRNA-Disease Association 
(RLSMDA) by integrating disease-disease semantic similarity network, miRNA-miRNA functional similarity 
network, and known human miRNA-disease associations. RLSMDA does not need negative samples and could 
be effectively applied to diseases without any known related miRNAs.

Other computational models tried to predict miRNA-disease associations based on known disease-related 
genes and predicted miRNA-target interactions. For example, Shi et al.48 proposed a computational method to 
predict miRNA-disease associations by focusing on the functional link between miRNA targets and disease genes 
in protein-protein networks. Mørk et al.49 proposed a method called miRPD to predict potential miRNA-disease 
associations by integrating miRNA-protein associations and protein-disease interactions text mined from the 
literature. Xu et al.50 presented a miRNA prioritization approach by using the functional similarities between 
miRNA target genes derived from matched miRNA and mRNA expression dataset and known disease genes. 
However, the molecular bases for only less than 40% of human diseases are partly known and we can’t obtain 
highly accurate miRNA-target interactions, which have limited the application of these methods.

As mentioned above, the exiting methods have different limitations. For example, miRNA-target interactions 
and disease-genes associations used in some methods are incomplete or inaccurate. Furthermore, many meth-
ods couldn’t be applied to disease without any known related miRNAs. Therefore, new effective computational 
methods are urgently in need. Based on the assumption that functional similar miRNAs tend to interact with sim-
ilar diseases, we developed the model of Within and Between Score for MiRNA-Disease Association prediction 
(WBSMDA) by integrating known miRNA-disease associations, miRNA functional similarity network, disease 
semantic similarity network, and Gaussian interaction profile kernel similarity network to uncover the potential 
disease-miRNA associations. WBSMDA is applicable for diseases without any known related miRNAs. LOOCV 
was implemented for WBSMDA and the AUC of 0.8031 has been obtained, which demonstrated the reliable and 
effective performance of WBSMDA. Then, WBSMDA was evaluated by the case studies of Colon Neoplasms, 
Prostate Neoplasms and lymphoma. As a result, 45, 40 and 42 out of top 50 predicted miRNA-disease associations 
for these three important diseases were confirmed by recent experimental literatures, respectively.

Results
Leave-one-out cross validation. LOOCV was implemented on known miRNA-disease associations 
obtained from HMDD51 to evaluate the predictive performance of WBSMDA. For each given disease d, each 
known disease-related miRNA was left out in turn as test miRNA and other known disease-related miRNAs were 
taken as training miRNAs. All miRNAs without known evidences to be associated with the disease d were selected 
to be candidate miRNAs. Then we can get the rank of this test miRNA among the candidate miRNAs. If the rank 
exceeds the given threshold, the WBSMDA model was considered to have made a correct prediction of this 
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miRNA-disease association. Receiver-Operating Characteristics (ROC) curve was drawn by plotting true positive 
rate (TPR, sensitivity) versus false positive rate (FPR, 1-specificity) at different thresholds. Here, Sensitivity refers 
to the percentage of the test miRNA-disease associations which are ranked higher than the given threshold. And 
specificity (also called the true negative rate) refers to the percentage of negative miRNA-disease pairs below 
the threshold. When we vary the thresholds of successful prediction, we can obtain the corresponding TPR and 
FPR. In this way, ROC could be drawn and the area under ROC curve (AUC) could be calculated to evaluate the 
performance of WBSMDA. If AUC =  1, it means that the WBSMDA has perfect performance. And AUC =  0.5 
indicates random performance. As a result, WBSMDA achieved a reliable AUC of 0.8031 (See Fig. 1).

Compared with other methods. We further compared WBSMDA with the following three classical meth-
ods which have been confirmed to achieve excellent prediction accuracy based on the previous version of known 
miRNA-disease associations in HMDD51: 1)RLSMDA35, which predicted disease-related miRNAs based on the 
framework of regularized least squares; 2)RWRMDA37, which implemented random walk on the miRNA func-
tional similarity network to predict novel miRNA-disease associations; 3)HDMP43, which predicted potential 
disease-related miRNAs based on weighted k most similar neighbors. The comparison result between WBSMDA 
and these three methods was shown in Fig. 1, which demonstrated the superiority performance of WBSMDA to 
previous computational models. Especially, WBSMDA significantly improved the performance of RLSMDA with 
the AUC increase of 0.11. RWRMDA and HDMP can’t be used to diseases without any known associated miRNAs 
and miRNAs without any known related diseases. Therefore, except for performance improvement over these two 
computational models, WBSMDA could effectively overcome this important limitation.

Furthermore, we implemented 5-fold cross validation for miRNA-disease association prediction evaluation. 
All the known miRNA-disease associations have been divided into 5 groups with equal sizes, where 4 groups 
would be regarded as training samples for model learning and the other group would be used for model evalua-
tion. We implemented 100 randomized divisions of known associations to minimize the performance difference 
resulting from samples divisions. As a result, WBSMDA has obtained the reliable performance (the mean and the 
standard deviation of AUCs is 0.8185 and 0.0009, respectively.).

Case studies. WBSMDA was applied to predict potential miRNA-disease associations for all the diseases 
investigated in this paper. To further demonstrate the prediction ability of WBSMDA, case studies of Colon 
Neoplasms, Lymphoma and Prostate Neoplasms were implemented here. The prediction results were validated 
based on another two important miRNA-disease association databases, miR2Disease52 and dbDEMC database53. 
One important fact must be pointed out is that only the associations which are not recorded in the HMDD data-
base would be regarded as validation datasets. Therefore, validation datasets is totally independent of datasets 
used for prediction.

Colon Neoplasms (CN) are a big threaten to people’s lives with a low detection rate at early stages54,55. There 
is an increasing need of novel sensitive biomarkers that could help improve the detection of CN56. For exam-
ple, miRNA hsa-mir-145 can inhabits the growth of CN cells by targeting the insulin receptor substrate-1, and 
hsa-mir-126 could suppress the growth of CN cells by targeting phosphatidylinositol 3-kinase signaling57,58. 
Taking CN as a case study, WBSMDA was implemented to prioritize candidate miRNAs (See Table 1 and 
Supplementary Table 1). As a result, nine of the top ten potential related miRNAs were confirmed to be associated 
with CN. Furthermore, forty-five out of top fifty potential CN-associated miRNAs predicted by WBSMDA were 
confirmed to be associated with CN. Among those predicted CN-associated miRNAs, hsa-mir-20a (1st in the 
prediction list) was confirmed to up-regulated in three or more types of solid cancers, including CN24. Studies 
have found mir-18a (2nd in the prediction list) may function as a tumor suppressor by targeting K-Ras in CN59. 
What’s more, hsa-mir-19b and hsa-mir-19a (3rd and 4th in the prediction list, respectively) were confirmed to be 
differentially expressed between CN and normal colorectal tissue60.

Figure 1. The comparison result between WBSMDA and these three methods was shown, which 
demonstrated the superiority performance of WBSMDA to previous computational models. 
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Lymphoma could be divided to two main categories: Hodgkin lymphomas (HL) and the non-Hodgkin lym-
phomas (NHL). HL is more frequently occurring lymphatic cancer with three to four novel cases per 100,000 
individuals every year in the Western population. Furthermore, HL is difficult to be diagnosed at early stages61,62. 
NHL is a heterogeneous group of malignancies that originate in lymphatic hematopoietic tissue. NHL is treated 
mainly through chemotherapy treatment and local radiotherapy and could be further classified into B-cell lym-
phomas and T-cell lymphomas63. Recent experimental studies showed that the down-regulation of mir-16, mir-
101 and mir-138 in the t (14;18)-negative FL (follicular lymphoma) subset was connected to profound mRNA 
expression changes of potential target genes involving cell cycle control and apoptosis64. MiRNA hsa-mir-19a 
showed an increased expression level compared with normal canine peripheral blood mononuclear cells (PBMC) 
and normal lymph nodes (LN) in canine B-cell lymphomas65. Taking lymphomas as a case study to implement 
WBSMDA for potential miRNA-disease association prediction, top ten potential lymphoma-associated miR-
NAs in the prediction list were all successfully verified based on recent experimental reports (See Table 1 and 
Supplementary Table 2). Furthermore, for the top fifty predicted lymphoma-associated miRNAs predicted by 
WBSMDA, forty-two of them have experimental literature evidences. For example, the up-regulation of miRNA 
hsa-mir-183 (1st in the prediction list), hsa-mir-215(2nd in the prediction list), hsa-mir-9 (3rd in the prediction 
list), hsa-mir-34a (5th in the prediction list) and down-regulation of hsa-mir-30b (4th in the prediction list) are 
all related to the development of lymphoma.

Prostate Neoplasms (PN) is the second leading cause of cancer-related death among men in developed coun-
tries66,67. About 29,720 patients died of PN in 2013 in the USA and it is estimated that there will be about 220,800 
new cases in 201566–68. The initial treatment for most patients with PN is generally effective, while then PN will 
progresses to CRPC (castration-resistant prostate cancer) which is difficult to treat66. MiRNA mir-145 was dereg-
ulated in PN by targeting the proto-oncogene ERG69. It was also reported that androgen represses the mir-99a/
let7c/125b-2 cluster through androgen receptor (AR) which can stimulate and repress gene expression to pro-
mote the initiation and progression of PN70. Taking PN as a case study to implement WBSMDA, eight predicted 
PN-associated miRNAs of the top ten prediction list and forty of top fifty prediction list were verified based on 
experimental reports (See Table 1 and Supplementary Table 3). For example, the expression of hsa-mir-143 (1st 

miRNA Disease Association score Evidence

hsa-mir-20a Colon Neoplasms 0.9442 dbdemc;miR2Disease

hsa-mir-18a Colon Neoplasms 0.8654 miR2Disease

hsa-mir-19b Colon Neoplasms 0.8581 dbdemc;miR2Disease

hsa-mir-19a Colon Neoplasms 0.8552 dbdemc;miR2Disease

hsa-mir-143 Colon Neoplasms 0.8005 dbdemc;miR2Disease

hsa-mir-92a Colon Neoplasms 0.7484 unconfirmed

hsa-mir-191 Colon Neoplasms 0.7319 dbdemc;miR2Disease

hsa-mir-132 Colon Neoplasms 0.7166 miR2Disease

hsa-mir-29b Colon Neoplasms 0.6982 dbdemc;miR2Disease

hsa-mir-34a Colon Neoplasms 0.6755 dbdemc;miR2Disease

hsa-mir-183 lymphoma 0.3882 dbdemc

hsa-mir-215 lymphoma 0.382509 dbdemc

hsa-mir-9 lymphoma 0.377564 dbdemc

hsa-mir-30b lymphoma 0.375303 dbdemc

hsa-mir-34a lymphoma 0.367483 dbdemc

hsa-let-7a lymphoma 0.364527 dbdemc

hsa-mir-145 lymphoma 0.364476 dbdemc;miR2Disease

hsa-mir-205 lymphoma 0.358745 dbdemc

hsa-mir-106b lymphoma 0.355309 dbdemc

hsa-mir-106a lymphoma 0.353891 dbdemc;miR2Disease

hsa-mir-143 Prostate Neoplasms 0.8005 dbdemc;miR2Disease

hsa-mir-126 Prostate Neoplasms 0.7654 dbdemc;miR2Disease

hsa-mir-203 Prostate Neoplasms 0.7117 unconfirmed

hsa-mir-199a Prostate Neoplasms 0.7089 dbdemc;miR2Disease

hsa-mir-34a Prostate Neoplasms 0.6755 dbdemc;miR2Disease

hsa-mir-200b Prostate Neoplasms 0.6695 unconfirmed

hsa-mir-127 Prostate Neoplasms 0.6642 dbdemc;miR2Disease

hsa-mir-141 Prostate Neoplasms 0.6609 mi2Disease

hsa-mir-194 Prostate Neoplasms 0.6571 dbdemc;miR2Disease

hsa-mir-223 Prostate Neoplasms 0.645 dbdemc;miR2Disease

Table 1.  WBSMDA was applied to Colon Neoplasms, lymphoma, Prostate Neoplasms to identify their 
potential associated miRNAs. As a result, 9, 10, and 8 of top 10 predicted pairs for these diseases have been 
confirmed based on recent experimental literatures.
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in the prediction list) and hsa-mir-199a (4th in the prediction list) is different in PN compared with the benign 
prostatic hyperplasia samples71. Studies also found that miRNA hsa-mir-126 (2nd in the prediction list) was one 
of the upregulated miRNAs in PN with perineural invasion (FDR 10%)72. Ectopic has-mir-34a (4th in the pre-
diction list) expression could induce apoptosis of PN cells, and could result in cell cycle arrest, growth inhibition 
and attenuated chemoresistance to anticancer drug camptothecin, suggesting that has-mir-34a could sever as a 
potential choice for the treatment of p53-defective PN73.

Discussions
As increasing evidences indicated that miRNAs are closely related to the development and progression of dif-
ferent kinds of human diseases, more and more attentions have been focused on the identification of novel 
miRNA-disease associations. Developing computational methods to predict novel miRNA-disease associations 
have attracted a lot of attentions because they could effectively decrease the time and cost of biological experi-
ments by quantifying the miRNA-disease association probability and selecting the associations with high scores 
for further experimental validation. In this paper, we developed a novel computational model of WBSMDA to 
predict potential miRNA-disease associations by integrating known miRNA-disease associations derived from 
HMDD, miRNA functional similarity network, disease semantic similarity network, and Gaussian interaction 
profile kernel similarity for diseases and miRNA. WBSMDA obtained a reliable AUC of 0.8031 in the valida-
tion schema of LOOCV, demonstrating the superior performance to previous classical computational models. 
Furthermore, case studies of Colon Neoplasms, lymphoma and Prostate Neoplasms were implemented and 90%, 
84%, and 80% of predicted miRNA-disease pairs in the top 50 prediction list for these three important diseases 
have been confirmed based on recent experimental literatures, respectively. It is anticipated that WBSMDA could 
be an important and useful miRNA-disease association prediction computational model with the potential value 
for human disease diagnosis, treatment, prognosis, and prevention.

In conclusion, the reliable performance of WBSMDA could be further attributed to the following fac-
tors, which also constitute the novelty of WBSMDA. Firstly, we obtained known experimentally confirmed 
miRNA-disease associations from highly reliable HMDD database and used them as the seed samples to pre-
dict potential associations between miRNAs and diseases. Then, plenty of heterogeneous biological datasets 
were integrated in WBSMDA, including known miRNA-disease associations, miRNA functional similarity 
network, disease semantic similarity network, and Gaussian interaction profile kernel similarity, which benefit 
the improvement of prediction accuracy and decrease the prediction bias. Furthermore, new diseases (diseases 
without any known related miRNAs) and new miRNAs (miRNAs without any known associated diseases) have 
been discovered each year. Therefore, it is very important to design novel and effective computational models for 
new diseases and miRNAs. WBSMDA could work for diseases without any known related miRNAs and miR-
NAs without any known associated diseases by quantifying the association probability between each candidate 
miRNA-disease pair and selecting the most promising associations for experimental validation, overcoming the 
limitations of most of previous computational models. Finally, as a global ranking model, WBSMDA could pre-
dict miRNA-disease association for all diseases simultaneously.

Of course, WBSMDA also have some limitations that need to be improved in the future. Firstly, since 
WBSMDA is developed based on the known miRNA-disease associations with the assumption that functional 
similar miRNAs are more likely to have connection with phenotypically similar diseases, it may cause bias to 
miRNAs with more known associated diseases. Furthermore, although WBSMDA has significantly improved 
previous methods, current predictive accuracy is still not very satisfactory based on the evaluation of LOOCV. 
In the future, the prediction performance of WBSMDA will be further improved by integrating more reliable 
biological datasets and obtaining more known miRNA-disease associations. Finally, how to more reasonably 
integrate similarity measure and integrate Within-Score and Between-Score to calculate the association score of 
miRNA-disease pair deserve further research in the future.

Methods
Human miRNA-disease associations. Human miRNA-disease associations were downloaded from the 
latest version of HMDD database, including 5430 experimentally verified human miRNA-diseases associations 
about 383 diseases and 495 miRNAs (see Supplementary Table 4). To better describe the miRNAs-disease asso-
ciations, we use the adjacency matrix A, in which the entity A(i,j) is 1 if miRNA m(j) is confirmed to be related to 
disease d(i), otherwise 0. Furthermore, variable nm and nd denotes the number of miRNAs and diseases investi-
gated in this study, respectively.

MiRNA functional similarity. In previous work74, miRNA functional similarity score was calculated based 
on the assumption that functionally similar miRNAs tend to be associated with phenotypically similar diseases. 
We downloaded miRNA functional similarity scores from http://www.cuilab.cn/files/images/cuilab/misim.zip in 
January 2010. Similarly, miRNA functional similarity matrix FS was constructed, where the entity FS(m(i), m(j)) 
represents the functional similarity between miRNA m(i)and m(j).

Disease semantic similarity. Each disease can be described as a Directed Acyclic Graph (DAG) and 
DAG(D) =  (D,T(D),E(D)) was used to represent the disease D, where T(D) is the node set including node D itself 
and its ancestor nodes, E(D) is the corresponding edge set including the direct edges from parent nodes to child 
nodes74. The semantic value of disease D could be calculated as follows:

∑( ) = ( )
( )∈ ( )

D D dDV
1d T D

D

http://www.cuilab.cn/files/images/cuilab/misim.zip
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( ) = =
( ) = ∆ ( ′) ′ ∈ ≠ ( )⁎

D d if d D
D d max D d d children of d if d D

1

{ } 2
D

D D

where ∆ is the semantic contribution factor. For disease D, the contribution of itself to the semantic value of dis-
ease D is 1 and the contribution decrease as the distance between D and other disease increases. Therefore, disease 
terms in the same layer would have the same contribution to the semantic value of disease D.

Based on the assumption that two diseases sharing larger part of their DAGs are considered to have larger 
semantic similarity, the semantic similarity between disease ( )d i  and ( )d j  can be defined as follows:

( ( ), ( )) =
∑ ( ( ) + ( ))

( ( )) + ( ( )) ( )
∩∈ ( ( )) ( ( )) ( ) ( )SS d i d j

D t D t

DV d i DV d j 3
t T d i T d j d i d j

where SS is the disease semantic similarity matrix.

Gaussian interaction profile kernel similarity for diseases. Based on the assumption that functional 
similar miRNAs tend to be associated with similar diseases, Gaussian interaction profile kernel similarity for 
diseases are calculated by considering the topologic information of known miRNA–disease association network. 
Firstly, we used binary vector IP(d(i)) to denote the interaction profiles of disease d(i) by observing whether dis-
ease d(i) is associated with each miRNA or not, i.e. the ith row of the adjacency matrix A. Then, Gaussian kernel 
similarity between disease d(i) and d(j) was defined based on their interaction profiles as follows.

γ( ( ), ( )) = (− ( ( )) − ( ( )) ) ( )KD d i d j exp IP d i IP d j 4d
2

where parameter γd was used to control the kernel bandwidth and obtained by normalizing a new bandwidth 
parameter γ ′d by the average number of associations with miRNAs for all the diseases.

Therefore, γd was defined as follows.

∑γ γ= ′ /





( ( ))



 ( )=nd

IP d i1
5

d d
i

nd

1

2

Finally, KD is the Gaussian interaction profile kernel similarity matrix for diseases, where the entity KD( ( )d i , ( )d j ) 
is the Gaussian interaction profile kernel similarity between disease d(i) and d(j).

Gaussian interaction profile kernel similarity for miRNAs. Similar to disease Gaussian interaction 
profile kernel similarity calculation, miRNA Gaussian interaction profile kernel similarity matrix can be calcu-
lated in a similar way:

γ( ( ), ( )) = (− ( ( )) − ( ( )) ) ( )KM m i m j exp IP m i IP m j 6m
2

∑γ = γ′ /





( ( ))



 ( )=

1
nm

IP m i
7m m

i 1

nm
2

Here, interaction profile ( ( ))IP m i  of miRNA ( )m i  was defined to denote whether ( )m i  is associated with each 
disease or not. γm was obtained through the normalization of a new bandwidth parameter γ′m by the average 
number of associated diseases for all the miRNAs.

Integrated similarity for miRNAs and diseases. Here, integrated miRNA similarity matrix Sm and inte-
grated disease similarity matrix Sd were constructed based on miRNA functional similarity, disease semantic 
similarity, and Gaussian interaction profile kernel similarity, respectively.

( ( ), ( )) =






( ( ), ( )) ( ) ( )
( ( ), ( )) ( )

S m i m j
FS m i m j m i and m j has functional similarity

KM m i m j otherwise 8
m

( ( ), ( )) =






( ( ), ( )) ( ) ( )
( ( ), ( )) ( )

S d i d j
SS d i d j d i and d j has semantic similarity
KD d i d j otherwise 9

d

WBSMDA. Based on the assumption that functional similar miRNAs tend to be associated with similar dis-
eases and vice versa, we developed the method of Within and Between Score for MiRNA-Disease Association 
prediction (WBSMDA) to predict potential miRNA-disease associations (see Fig. 2, motivated by literature75). 
Within-Scores and Between-Scores for miRNA-disease pair ( ( ), ( ))m j d i  were defined as follows:
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where pmi was the miRNA group that has known relation with disease di, nmi was the miRNA group that does not 
have known relation with disease di, pd j was the disease group which is associated with miRNA ( )m j  in the 
known miRNA-disease association dataset, and nd j was the disease group which is not proved to be associated 
with miRNA ( )m j  in the known miRNA-disease association dataset. Briefly speaking, from the view of miRNA, 
the Within-Score is to find the miRNA that has the highest similarity score with investigated miRNA among the 
group of miRNAs with known association with the investigated disease. The Between-Score is to find the miRNA 
that has the highest similarity score with investigated miRNA in the group of miRNAs without known association 
with the investigated disease. Also from the view of disease, the Within-Score and Between-Score were defined in 
the same way.

Here, we combined Within-Score and Between-Score from the view of miRNA and diseases to calculate the 
association probability for miRNA-disease pair ( ( ), ( ))m j d i  as follows:

( ( ), ( )) =
( ( ), ( )) × ( ( ), ( ))

( ( ), ( )) × ( ( ), ( )) ( )
m j d i

m j d i m j d i
m j d i m j d i

F
C C
C C 11

m
w

d
w

m
b

d
b

Furthermore, for new diseases d without any known related miRNAs, we could integrate Within-Score and 
Between-Score from the view of diseases to predict its related miRNAs as follows:

( ( ), ) =
( ( ), )

( ( ), ) ( )
m j d

m j d
m j d

F
C
C 12

d
w

d
b

Also, for new miRNAs m without any known associated diseases, Within-Score and Between-Score from the view 
of miRNAs could be integrated to predict its potential associated diseases as follows:

Figure 2. Flow chart of WBSMDA demonstrating the basic ideas of predicting potential disease-related 
miRNAs by integrating known miRNA-disease associations, miRNA functional similarity, disease semantic 
similarity, and Gaussian interaction profile kernel similarity. Within-Score and Between-Score were 
calculated and combined to obtain the final score for potential miRNA-disease association inference.
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