
Efficient parallel HEVC intra-prediction
on many-core processor

C. Yan, Y. Zhang, F. Dai, J. Zhang, L. Li and Q. Dai
ELECT
High-efficiency video coding (HEVC) is the state-of-the-art video
coding standard, which adopts more complicated and time-consuming
intra-prediction (IP) modes. Many-core processors are good candidates
for speeding up HEVC IP in the case that HEVC IP can provide suffi-
cient parallelism. Proposed is an efficient parallel framework for
HEVC IP. Experiments show that the proposed method dramatically
accelerates more than the state-of-the-art parallel method.
Introduction: Intra-prediction (IP) is used to remove the spatial redun-
dancies within one image. High-efficiency video coding (HEVC) pro-
vides a highly flexible block splitting manner for IP, which includes
three unit concepts [1]: the coding tree unit (CTU), the coding unit
(CU) and the prediction unit (PU) (Fig. 1). Each frame is first divided
uniformly into non-overlapped square CTUs, which can be recursively
split into smaller CUs using a generic quadtree segmentation structure.
The CU also has a square shape and can be further split into PUs. PUs
are the basic units used for carrying IP information. There are only nine
intramodes available for 4 × 4 luma blocks in H.264/AVC. To enhance
the coding efficiency of HEVC, HEVC provides as many as 35 predic-
tion modes for different PUs. If a neighbouring PU is coded, it will be
available for the current PU. The current PU may have data dependen-
cies on its neighbouring left, left-down, upper, upper-left and upper-
right PUs, whose prediction information may be available for the
current PU.

CTU

CTU

CTU

CTU

CTU

CTU

CTU
CU

CU

CU
PU

PU PU

2N × 2N

N × N

PU PU

CU

CU

CU

CU

CTU

CTU

Fig. 1 Flexible block splitting manner for HEVC IP
Parallel intra-coding (PIC) [2] is the state-of-the-art parallel proposal
for HEVC IP. PIC introduces the concept of the parallel IP unit (PPU),
which defines the size of a block that can be coded in parallel. The
maximum parallelism of PIC reaches 2, which is not adequate for many-
core processors. It is urgently demanded to provide sufficient parallelism
for HEVC IP.

Proposed efficient parallel framework for HEVC IP: PIC eliminates the
data dependencies among blocks within the same PPU. However, the
PPUs and CTUs have to be processed sequentially. We propose an effi-
cient parallel framework for HEVC IP. We first analyse the data de-
pendencies among neighbouring CTUs and use the directed acyclic
graph (DAG)-based order to parallelise CTUs (DAGCTU), which exploits
the implicit CTU-level parallelism. Then we find that the CTU size
influences the parallelism and coding efficiency. On the premise of
having satisfying coding efficiency, we select the optimal CTU size
by using a support vector machine (SVM) classifier (SVMCTU).

DAGCTU: The CTUs are processed in row scanning order, where k
denotes the time stamp of the CTU. The data dependencies among
neighbouring CTUs are caused by the PUs. When processing the
current CTU, the PUs within the current CTU’s neighbouring left-down
CTU are not coded yet, which will be unavailable for the PUs in the
current CTU. Therefore the current CTU has no data dependency on
its adjacent left-down CTU. Meanwhile, the PUs in the current CTU’s
neighbouring left, upper, upper-left and upper-right CTUs are coded.
The current CTU has data dependencies on its neighbouring left,
upper, upper-left and upper-right CTUs.

We generate a DAG to capture the dependency relationships of CTUs.
We first map each CTU in the frame into a point in a two-dimensional
RONICS LETTERS 22nd May 2014 Vol. 50
(2D) coordinate plane as follows:

i = ceil
k

W

()
(1)

j = k mod W (2)

where i and j are, respectively, coordinate values of the horizontal axis
and vertical axis, W is the horizontal CTU number of the frame and the
ceil function returns the value of a number rounded upwards to the
nearest integer.

Then we use a DAG to represent the execution flow of the CTUs and
the precedence constraints among the CTUs. We mark the DAG as G
= (V, E), which consists of a set of vertices V and edges E. Vertices are
numbered according to the coordinate value of CTUs in the 2D coord-
inate plane. For example, vertex vi,j represents the CTU with the coord-
inate value (i, j). If vertex vi,j is a parent of vertex vm,n, vertex vm,n will
have data dependency on vi,j and there will exist an edge (vi,j, vm,n)∈ E.
When vertex vi,j is processed, vertex vi,j and edge (vi,j, vm,n) will be
removed from the DAG. Precedence constraint means that when the
in-degrees of some vertices are zero, these vertices can be processed
in parallel. To parallelise the vertices, it is important to record and
update the in-degrees of all the vertices. We obtain the initial value of
the in-degrees by the adjacency matrix. We generate the adjacency
matrix A of the DAG as follows:

A(i, j), (m, n) =
1, (vi, j , vm, n) [E

0, otherwise

{

s.t. 1 ≤ i, m ≤ H 1 ≤ j, n ≤ W

(3)

whereH is the vertical CTU number of each frame, and A is a 2D matrix.
The initial in-degree Dm,n of vertex vm,n in the DAG can be summar-

ised as follows:

Dm, n =
∑H
i=1

∑W
j=1

A(i, j), (m, n)

s.t. 1 ≤ m ≤ H , 1 ≤ n ≤ W

(4)

where D is a 2D matrix, which represents the initial state of the
in-degrees of the DAG.

SVMCTU: The processing times of CTUs are different from each
other. To analyse the maximum parallelism conveniently, we suppose
all the processing times of CTUs are the same. The maximum paralle-
lism of CTU (MPCTU) can be calculated as follows:

MPDAGCTU = min ceil
W

2

()
, H

()
(5)

W = Wf

C
(6)

H = Hf

C
(7)

where Wf and Hf are, respectively, the horizontal and vertical pixel
numbers of each frame. C is the length of the CTU.

HEVC encoding
information

feature
vector

analyser classifier
class label

(coding efficiency)

Fig. 2 Select optimal CTU size by using SVM classifier (SVMCTU)

The maximum parallelism of our method is much more than that of
PIC. When the resolution of CTU is 16 × 16, the maximum parallelism
of our proposed method reaches 60 and 80 for 1920 × 1080 and 2560 ×
1600 video sequences, respectively. We also find that the CTU size
influences the parallelism and coding efficiency greatly. The smaller
the CTU size is, the more the parallelism is, whereas at the same time
the CTU size also affects the coding efficiency significantly quite the
opposite way. On the premise of having satisfying coding efficiency,
we select the optimal CTU size using a SVM classifier (Fig. 2). In par-
ticular, we extract useful coding information of current video sequences
to compose feature vectors (FVs). We form the FV as follows:

FV = (Wf , Hf , QP, C) (8)
No. 11 pp. 805–806

Besides the CTU size, the coding efficiency is also closely related to
other coding information, such as QP and the resolution of the frame [1].
Large CTU size can be very efficient for a high resolution, large QP
video sequence. We obtain Wf, Hf, QP and C from the pre-encoded
HEVC files, which are generated to the FV. For a video sequence, Wf,
Hf, QP and C are specified in the configuration profile. We change the
CTU size and form different FVs. Then we send the FVs to a pre-trained
classifier. The output of the classifier is a class label 0 or 1 correspond-
ing to whether we obtain the satisfying coding efficiency. 1 indicates we
obtain the satisfying coding efficiency. The classifier is trained as
follows. For each frame, the FV is recorded along with the correspond-
ing class label, which is jointly called a training instance. Each instance
is normalised to be in a range between 0 and 1, which is used as an input
feature to the linear SVM classifier. Extensive instances are input into
the classifier to train it. We mark the FVs as follows:

SFV = SFV0 < SFV1 (9)

where SFV is the complete set of FVs. Set SFV0 and SFV1 are the subsets
of SFV. Set SFV0 is the FVs that do not have satisfying coding efficiency.
Set SFV1 is the FVs that have satisfying coding efficiency. Among all the
FVs that belong to set SFV1, we select the minimum CTU size.
According to (5)–(7), we know that if we select the smaller CTU size,
the parallelism will be higher. On the premise of having satisfying
coding efficiency, we obtain the maximum parallelism using the SVM
classifier.

Table 1: BD-rate performance compared with HM12.0
Sequences
 PIC (%)
 DAGCTU C = 16 (%)
ELE
Proposed (%)
Vidyo1
 2.0
 7.4
 1.2
Vidyo3
 1.8
 8.7
 1.6
SlideShow
 1.4
 17.9
 1.8
ParkScene
 1.2
 2.8
 1.6
BasketballDrive
 1.3
 11.2
 1.0
BQTerrace
 0.6
 4.1
 2.2
Traffic
 1.2
 3.5
 0.9
SteamLocomotive
 0.2
 4.7
 1.1
Nebuta
 0.2
 6.7
 1.1
Average
 1.1
 7.4
 1.4
PIC

7.3

1.4

Vidy
o1

_1
28

0 × 72
0

Vidy
o3

_1
28

0 × 72
0

Slid
eS

ho
w_1

28
0 × 72

0

Par
kS

ce
ne

_1
92

0 × 10
80

Bas
ke

tba
llD

riv
e_

19
20

 × 10
80

BQTe
rra

ce
_1

92
0 × 10

80

Tra
ffic

_2
56

0 × 16
00

Stea
mLo

co
moti

ve
_2

56
0 × 16

00

Neb
uta

_2
56

0 × 16
00

0

2.0

4.0

6.0

8.0

sp
ee

d
up

10.0

12.0

14.0

1.4 1.5 1.5 1.6 1.3 1.4 1.5 1.6

5.8
4.7

8.5 9.0 9.0
10.8 11.1

12.5

proposed

Fig. 3 Speed up of PIC and proposed method compared to serial execution
using 64 cores, QP = 37
CTRONICS LETTERS
Results: The experiment platform is Tile64, which contains 64 proces-
sing cores [3]. Experiments were carried out on the HEVC reference
software HM12.0 and a well-known library libsvm3.12 [4] for the
SVM. Nine standard test sequences ‘PeopleOnStreet’, ‘Kimono’,
‘Cactus’, ‘BasketballDrill’, ‘BasketballPass’, ‘BasketballDrillText’,
‘ChinaSpeed’, ‘Vidyo4’ and ‘SlideEditing’ are used for training the
classifier. Compared with HM12.0, if the BD-rate loss of a frame is
more than 1.5%, the class label will be set as 0 (unsatisfying quality).
The FV of a frame and the corresponding class label is jointly called
a training instance. We randomly select 2000 instances which are
input into an SVM to train it. The BD-rate performances of all the
methods compared with HM12.0 are shown in Table 1. The positive
number means the coding efficiency loss. From (5) to (7), if we directly
select the smallest CTU size (equal to 16), the parallelism of DAGCTU
will be the highest. However, DAGCTU (C = 16) leads the BD-rates to a
serious increase of 7.4% on average, whereas PIC and our proposed
method have little effect on the coding efficiency. Fig. 3 shows the
speed up of PIC and the proposed method compared with serial
execution. Our proposed method accelerates a lot more than PIC.
Compared with serial execution, our proposed method achieves aver-
agely more than eight times speed up.

Conclusion: On the premise of having satisfying coding efficiency, we
propose an efficient parallel framework for HEVC IP. The performance
of the proposed scheme is confirmed by experiments.

Acknowledgments: This work is supported by the National Key
Technology Research and Development Program of China
(2012BAH06B01) and the National Nature Science Foundation of
China (61102101, 61272323, 61379084).

© The Institution of Engineering and Technology 2014
20 February 2014
doi: 10.1049/el.2014.0611
One or more of the Figures in this Letter are available in colour online.

C. Yan, Y. Zhang, F. Dai, J. Zhang and L. Li (Key Laboratory of
Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology, CAS, Beijing, People’s
Republic of China)

E-mail: zhyd@ict.ac.cn

Chenggang Yan and Q. Dai: Also with the Department of Automation,
Tsinghua University, Beijing, China

References

1 Sullivan, G.J., et al.: ‘Overview of the high efficiency video coding
(HEVC) standard’, IEEE Trans. Circuits Syst. Video Technol., 2012,
22, (12), pp. 1649–1668

2 Zhao, J., et al.: ‘CE6.d: Parallel Intra Coding’. JCTVC-F605, July, 2011
3 Zhang, Y., et al.: ‘Efficient parallel framework for H.264/AVC deblock-

ing filter on many-core platform’, IEEE Trans. Multimedia, 2012, 14, (3),
pp. 510–524

4 Libsvm Version 3.12. Available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm/
22nd May 2014 Vol. 50 No. 11 pp. 805–806

