
Parallel deblocking filter for HEVC on
many-core processor

Chenggang Yan, Yongdong Zhang, Feng Dai, Xi Wang,
Liang Li and Qionghai Dai
ELECT
High-efficiency video coding (HEVC) is the next generation standard
of video coding. The deblocking filter (DF) constitutes a significant
part of the HEVC decoder complexity. A three-step parallel framework
(TPF) is proposed for the H.264/AVC DF, which is also suitable for
HEVC except the third step. The third step of the TPF is replaced
with a directed acyclic graph-based order. Experiments show that the
proposed method dramatically accelerates more than the state-of-the-
art parallel method.
Introduction: At the beginning of high-efficiency video coding
(HEVC) standardisation, the processing order of the deblocking filter
(DF) is similar to that of the H.264/AVC DF [1]. As shown in Fig. 1,
each frame in HEVC is divided into coding tree units (CTUs), which
can be recursively split into smaller coding units (CUs) by using a
generic quadtree segmentation structure. As shown in Figs. 1a and b,
the DF follows the processing order of the CTU and the CU, the
numbers of which indicate the coding order. CUs can be further split
into prediction units (PUs) and transform units (TUs). Deblocking filter-
ing takes place in vertical and horizontal edges of PUs and TUs. Each
edge consists of one or several parts, whereas a part is of the size of
8 × 8 samples for the luma component and of 4 × 4 samples for the
chroma component. As shown in Fig. 1c, if one CU has the size of
16 × 16 samples for the luma component, this CU will have four vertical
edges v1, v2, v3 and v4 and four horizontal edges h1, h2, h3 and h4. Within
each CU, the vertical edges are processed before the horizontal edges.
The order of filtering the vertical and horizontal edges is from top to
bottom and from left to right.

11

2 3

4 5 6

7 8 9

1 2

3 4
5

6
8

9 10

7

v1

v2 v4

v3

h1

h3

h2

h4

processing order

frame CTU CTU CU CU
a b c

1

Fig. 1 Processing order of DF

a Processing order of CTU within example frame
b Processing order of CUs within example CTU
c Processing order of edges within example 16 × 16 CU

The data dependencies of the DF are caused by the DF’s three sub-
tasks: edge discrimination (ED), boundary strength computation
(BSC) and filtering. ED determines whether or not to adopt filtering.
BSC decides between a strong and weak filtering. The result of each fil-
tering step may be used as an input to subsequent ED and filtering. To
make HEVC deblocking filtering more ‘parallel-friendly’, [2] proposed
an efficient order-changed parallel method (OCPM), which changes the
order of filtering. The filtering does not follow the processing order of
the CTU and CUs as before. Within each frame, all the vertical edges
are filtered in parallel before all the horizontal edges. However, the
OCPM has not alleviated the data dependencies between BSC and filter-
ing. BSC cannot be processed in parallel before filtering. Meanwhile,
the OCPM has the load imbalance problem because the DF of every
edge is not the same.

On the premise of keeping the order of filtering unchanged, our pre-
vious work on a three-step parallel framework (TPF) for H.264/AVC DF
[3] is also suitable for that of HEVC except the third step. We consider
ED and filtering as EDF. In the first step, we divide the entire DF process
into two parts and parallelise BSC before EDF, which increase the par-
allelism. In the second step, we use the Markov empirical transition
probability matrix and the Huffman Tree to alleviate the load imbalance
problem of BSC. However, in the last step, the independent pixel con-
nected area parallelisation is not suitable for HEVC EDF because the
unit representation of HEVC is greatly different from that of H.264/
AVC. In this Letter, we propose a directed acyclic graph
(DAG)-based order to parallelise HEVC EDF.
RONICS LETTERS 27th February 2014 Vol. 5
Proposed DAG-based order to parallelise EDF
Classify filtered pixels into two sets: The details of the filtered pixels
and their respective evaluated pixels can be found in [1]. Fig. 2 shows
an example of the classified filtered pixels for a 16 × 16 CU. The
white pixels will not be filtered neither by vertical filtering nor by hori-
zontal filtering. The once filtered pixels are located in the middle of edge
filtering. The twice filtered pixels are located in the margin of edge filter-
ing. We mark the filtered pixel sets as follows:

Dc = Donce<Dtwice (1)

where Dc is the complete set of filtered pixels. Donce and Dtwice are the
subsets of Dc. Set Donce consists of pixels that will be filtered only once
by the vertical or the horizontal edge. Set Dtwice consists of pixels that
will be filtered by both the vertical and horizontal edges. The EDF of
Donce has no data dependency on Dtwice, so Donce can be processed in
parallel before Dtwice.

vertical filtering

horizontal filtering

vertical filtering and 
horizontal filtering

luma component

chroma component

Fig. 2 Example of classified filtered pixels for 16 × 16 CU

A

C

B

D

B

D

DC D

h1 h2

v2

v1

a

a b

c d

e f

g h

i j

k l

m n

o p

h1

h2

v1 v2
h4

h6

v6

v
3

v4

h3

h5

v5

case A case B

case C

case D

b

Fig. 3 Dividing Dtwice into four cases marked as A, B, C and D

a Dividing Dtwice into four cases according to filter conditions
b Pixels sets are marked as a, b, …, n, p for luma component

Classify Dtwice into four cases: Fig. 3a shows an example of a CU with
the size N*N. N indicates horizontal and vertical numbers of eight con-
secutive pixels for the luma component and four consecutive pixels for
the chroma component. v1, v2, …, v(n*n) are vertical filtering and h1,
h2, …, h(n*n) are horizontal filtering. The grey areas represent the
twice filtered pixels which belong to Dtwice. We divide those areas
into four cases marked as A, B, C and D according to the filtering con-
ditions. Those pixel sets are 6 × 6 samples for the luma component and
2 × 2 samples for the chroma component. Cases A, B and C,
0 No. 5 pp. 367–368



respectively, are located in the upper-left, upper and left borders of the
CTU. The pixels in these cases have similar filtering conditions.

Parallelise Dtwice with DAGs: The dependencies analysis of Dtwice

between the luma and the chroma components is similar. To facilitate
the subsequent analysis, we just analyse the luma component and
mark the pixel sets in four cases A, B, C and D as a, b, …, n, p
(Fig. 3b). Each case has four pixel sets and each pixel set is 3 × 3
samples. For example, case A has the pixel sets a, b, c and d. The de-
pendencies among pixel sets are represented as DAGs (Fig. 4). Each
vertex designates a task that a specific pixel set is filtered by a particular
edge. For example, the vertex ‘av1’ means that the pixel set ‘a’ is filtered
by the edge ‘v1’. The data dependencies in four cases are different from
each other. The dependencies among the EDF tasks correspond to the
edges in the DAGs. For example, task ‘ah1’ has a data dependency on
task ‘av1’. The DAGs for the chroma component are the same as
those for the luma component. The only difference is that the pixel
sets a, b, …, n, p represent a 1 × 1 sample for the chroma component.
We decompose the process of tasks in DAGs into four stages. When
the in-degrees of some vertices in the DAGs are zero, those vertices
are processed in parallel. In the following stage, those processed vertices
will be removed from DAGs, and the data dependencies will be updated.
We can obtain the similar process of Dtwice for the chroma component.
We parallelised the Dtwice with DAGs. The dependencies among the
filtered pixels did not change.

av1

dh3

dv3 bv1

bh3

ch1

cv3

ah1

ih2

lh5

kv4

lv4

jh5

kh2

iv3

jv3 mv5

ph6

nh6

oh5

pv6

nv5

mh5

ov6

ca
se

 A

ev2

hh4

fh4

gh3

hv5

fv2

eh3

gv5

ca
se

 B

ca
se

 C

ca
se

 D

Fig. 4 Dependencies among pixel sets are represented as DAGs

Results: Experiments were carried out on HM7.0 under the profile ‘ran-
domaccess_main’. The experiment platform was Tile64, which contains
64 processing cores [3]. Ten standard video test sequences with 64
frames were used. Fig. 5 shows the speedup of all the methods compared
to serial execution. ‘Proposed’ means the improved TPF, the third step
of which is replaced with a DAG-based order. Compared with the
OCPM, our proposed method achieves on average more than two
ELECTRONICS LETTERS 2
times speedup. Meanwhile, the proposed method improves the coding
efficiency, which achieves an average BD-rate reduction of 0.31% for
the Y component.

70
60
50 42.74

56.38
48.60

57.81
54.70

16.64
17.74

24.69
28.62 32.54

25.04
19.71 15.58

43.32 43.11
43.82

21.02 22.79

53.75
46.92

proposed OCPM

40
30
20
10
0

tra
ffic

pe
op

le 
on

 st
re

et

ne
bu

ta

str
ea

m lo
co

moti
ve

pa
rks

ce
ne

ca
ctu

s

ba
sk

et 
ba

ll d
riv

e

ba
sk

et 
ba

ll p
as

s

BQ te
rra

ce

BQ sq
ua

re

Fig. 5 Speedup of OCPM and proposed method compared to serial execution
using 64 cores, QP = 32

Conclusion: The OCPM is proposed to change the order of DF and to
make DF ‘parallel-friendly’. On the premise of keeping the order of DF
unchanged, we replace the third step of the TPF with a DAG-based
order. The performance of the proposed scheme is confirmed by the
experiments.

Acknowledgment: This work was supported by the National Nature
Science Foundation of China (61102101, 61272323 and 61379084)
and the National Key Technology Research and Development
Program of China (2012BAH06B01).

© The Institution of Engineering and Technology 2014
8 October 2013
doi: 10.1049/el.2013.3235
One or more of the Figures in this Letter are available in colour online.

Chenggang Yan, Yongdong Zhang, Feng Dai, Xi Wang and Liang Li
(Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, People’s Republic of China)

E-mail: zhyd@ict.ac.cn

Qionghai Dai (Tsinghua University, Beijing, People’s Republic of
China)

Chenggang Yan: Also with Tsinghua University, Beijing, People’s
Republic of China

References

1 Sullivan, G.J., and Ohm, J.-R.: ‘Recent developments in standardization
of high efficiency video coding (HEVC)’. Proc. SPIE, San Diego, CA,
USA, August 2010, vol. 7798, pp. 30–36

2 Ikeda, M., Tanaka, J., and Suzuki, T.: CE12 Subset2, ‘Parallel deblock-
ing filter’. JCTVC 5th meeting JCTVC-E181, Geneva, CH, March 2011

3 Zhang, Y., Yan, C., and Dai, F., et al.: ‘Efficient parallel framework for
H.264/AVC deblocking filter on many-core platform’, IEEE Trans.
Multimed., 2012, 14, (3), pp. 510–524
7th February 2014 Vol. 50 No. 5 pp. 367–368


