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Abstract 

In recent years, deep neural networks have been widely applied on 

recommender systems. Most research efforts are put on modeling 

the side information such as textual information, contextual 

information and social network information, but the core part, i.e., 

interaction relationship between users and items are relatively less 

explored by neural networks, in particular, when multiple types of 

implicit feedbacks, e.g., click, browsing, add-to-cart, etc. are 

available in the system. In this paper, we propose an end-to-end 

learning framework, which systematically and comprehensively 

models multiple implicit feedback between users and items. Firstly, 

for each type of implicit feedback, we apply matrix factorization and 

Multi-Layer Perception (MLP) to capture both linearity and 

nonlinearity of user-item interactions. Then we fuse the effects of 

multiple implicit feedback through neural networks to boost the 

quality of recommendation. Experiments on Alibaba real production 

dataset with over two million interactions demonstrate the 

effectiveness of proposed approaches, which achieve superior 

performance compared with state-of-the-art methods. 
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1 INTRODUCTION 

By suggesting personalized information to individual users, 
recommender systems (RSs) have become an effective tool to 
handle information overload in many online application scenarios 
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such as product recommendation at Amazon [2], video 
recommendation at YouTube [33], movie recommendation at 
Netflix [3, 4], to name a few. Since a user’s preference can be 
inferred according to her behaviors along the history, exploiting 
historical behavior data, e.g., by collaborative filtering has become 
the fundamental way to generate recommendations [1, 4, 10]. 

Among various collaborative filtering techniques, matrix 
factorization (MF) was one of the mainstream methods thanks to the 
well-known 1 million US dollar competition prize offered by Netflix 
[31]. The basic idea of MF is to project users and items into a shared 
space, and model a user’s preference on an item by inner product of 
the corresponding latent factor vectors. MF brings in the properties 
of simplicity, effectiveness and scalability for the recommendation 
problem, but its performance is limited by the linear way of user-
item interaction modeling, i.e., inner product. With the successful 
applications of deep learning in the area of Computer Vision [9, 11, 
13, 23], Natural Language Processing (NLP) [5, 27], etc., 
incorporating deep neural network component into recommendation 
models to capture complex structure of interaction data has become 
a trend in the community, and evident improvements have been 
observed [7, 12]. For instance, Google’s deep & wide model [6] 
integrates generalized linear model and multilayer perception to 
model the interactions among contextual information, DeepFM [7], 
xDeepFM [8], etc., merges Factorization Machines (FM) [29] and 
neural networks to improves the modeling capacity of original FM. 

However, existing collaborative filtering models suffer from the 
following limitations: (1) most deep learning based methods focus 
on modeling users’ behavior data and various side information such 
as temporal information, texts, social network information, 
contextual information, etc., but the sophisticated modeling of the 
pure user-item interaction data is relatively less explored; (2) most 
collaborative filtering models, including both MF based and deep 
learning based ones, typically focus on one type of behavior, or rely 
on simple linear combination of multiple types of behavior, lacking 
the effective way to capture the complex relationships among 
different types of behavior, e.g., how click, browse and add-to-cart 
behavior altogether reflect and impact users’ purchase behavior?    

In this work, we focus on implicit feedback, e.g., clicking an article, 
which is more common in many application scenarios compared to 
explicit feedback like ratings, and propose an end-to-end learning 
model to systematically and comprehensively models multiple 
implicit feedback between users and items to improve 
recommendation quality. Firstly, for each type of implicit feedback, 
we merge MF and Multi-Layer Perception (MLP) to capture the 
strengths of MF’s linearity and MLP’s nonlinearity to 
comprehensively model the complex user-item interactions. Then 
we fuse the effects of multiple implicit feedback through neural 
networks to further boost the accuracy of recommendations. We 
conduct extensive experiments over large-scale real datasets and 
demonstrate the effectiveness of our proposed models by comparing 
with the state-of-the-art collaborative filtering models for top-N 
recommendation task. 

2 RELATED WORKS 

In recommender systems, there exist two types of user behavior 
feedback, i.e., explicit feedback [14, 15, 30, 35], like rating, reviews 
and implicit feedback [16, 17, 18], like clicking, browsing, etc. Early 
works focus on explicit feedback, while recent attention has shifted 
to implicit data, which is more pervasive in systems. For instance, 
Liu et al. [16] proposed a boosting algorithm which uses a re-
weighting strategy to build multiple component recommenders that 

assigns a dynamic weight distribution to observed user-item implicit 
feedback. Yu et al. [17] systematically extracted latent features and 
used Bayesian ranking optimization techniques to build the model. 
He et al. [32] designed an element-wise Alternating Least Squares 
(eALS) based algorithm to effectively optimizes MF model with 
variable weighted missing data from implicit feedback. 

In recent years, with the fast development of deep learning 
techniques in various fields such as Computer Vision, applying deep 
neural networks to build recommendation models brings new 
opportunities to the community. For instance, He et al. [12] designed 
a model that uses neural networks instead of inner products to learn 
the complex interactions between users and items. Guo et al. [7] 
proposed a new neural network architecture that models low-order 
and high-order feature interactions by FM and Deep Neural 
Networks (DNNs), respectively. Yi et al. [37] built two feature 
transforming functions to generate latent factors between users and 
items directly from various input information, and converted high-
dimensional and sparse implicit feedback information into low-
dimensional real-value vectors that retain the main features through 
the Implicit Feedback Embedding (IFE) module. 

Most existing works typically focus on one type of feedback. 
However, it is common that multiple types of feedback exist in 
systems, ignoring which will cause information loss and degrade the 
quality of recommendations. A few works attempt to combine 
multiple types of feedback, for instance, Chen et al. [24] proposed a 
probabilistic MF based latent factor model that decomposes both 
explicit and implicit feedback matrices into a shared subspace. Liu 
et al. [19] studied the personalized ranking recommendation 
problem by integrating one type of explicit feedback and multiple 
types of implicit feedback. Gao et al. [36] modeled complex multi-
type interactions between users and items by considering cascading 
relationships between different types of behaviors. However, 
existing models typically rely on simple linear methods to combine 
feedback. In the next section, we describe our approach, which 
leverages deep neural networks and matrix factorization to 
comprehensively capture the complex relationships among different 
types of feedback for personalized recommendation. 

3  OUR APPROACH 

In this section, we first discuss the multiple implicit feedback 
problem for personalized top-N recommendation. Then, we show 
how to use MF to capture linear structure of user-item interactions. 
Next, we propose a multi-branch MLP based model to learn 
nonlinear functions between users and items, and also across 
multiple types of users’ behavior. Finally, we present an ensemble 
network architecture that unifies MF component and MLP 
component to further enhance user-item interaction modeling 
capacity. 

3.1 Multiple Implicit Feedback for Top-N 

Recommendation 

The pervasively available implicit feedback data has become an 
important information source for building personalized top-N 
recommender systems. However, sophisticatedly modeling multiple 
types of implicit feedback simultaneously is relatively less explored 
and has recently started receiving attention in the community [19]. 
In this work, in the presence of multiple types of implicit feedback, 
we use one of them as our optimization and recommendation 
objective, and the remaining as auxiliary information to support the 
recommendation objective. The former feedback is defined as target 
feedback and the latter feedback is defined as supportive feedback. 



For instance, in product recommendation, we use purchase behavior 
as target feedback, where our goal is to predict users’ next purchase 
behavior; other feedback behaviors such as click, favorite, add-to-
cart, etc. are used as supportive feedback to improve the model 
prediction accuracy. 

In order to provide top-N recommendation ranking, we follow the 
pairwise learning strategy where the optimal ordering of a pair of 
items are learned for ranking. It is therefore important to generate 
high quality positive-negative item pairs for model training. Given 
a positive item, i.e., from target feedback, we propose a sampling 
approach where the items that the user only interacted through 
supportive feedback are sampled as negative items. Compared to 
traditional random sampling [20], such a method can more 
accurately select informative negative items, which has been 
verified by experiments (see Section IV). 

3.2 Matrix Factorization (MF) 

MF has been extensively and effectively applied in recommender 
systems. Intuitively, by mapping users and items to a shared latent 
space with dimensionality of d, MF models a user’s preference for 
an item as the inner product of the corresponding latent factor 
vectors in that space. Specifically, each user u and item i are 

represented by vectors p
u
∈ Rd  and q

i
∈ Rd , respectively. For a 

given user u, the elements of 𝑝𝑢 measure the user's interest level in 
the corresponding factors, and 𝑞𝑖 expresses item i’s characteristics 
from different aspects. The resulting dot product y

ui
 expresses user 

u’s preference for item i, calculated as: 

 ŷ
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i
Tp
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d
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p
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As we can see, MF can be regarded as a linear model of latent factors 
of users and items. 

3.3 Multi-branch Multi-Layer Perceptron (M-

MLP) 

MF model effectively captures the linearity of user-item interaction 
relationships. However, in practice, user-item interactions typically 
reflect complex nonlinear structure; moreover, modeling the mutual 
influence among different types of feedback also requires 
sophisticated modeling beyond linearity. To address these issues, we 
propose to use MLP to learn the interaction functions between latent 
features of users and items as well as the mutual influence among 
different types of implicit feedback. 

As shown in Fig. 1, our model has a multi-branch network structure, 
named Multi-branch Multi-Layer Perceptron (M-MLP), in which 
each branch corresponds to a type of implicit feedback behavior and 
learns complex interaction structure between users and items under 
this implicit feedback. Specifically, we use “Target” to symbolize 
the target feedback, and abbreviate each type of supportive implicit 
feedback behavior into typeA, typeB, and typeC, respectively. Note 
that for the purpose of presentation, we use three types of supportive 
feedback, but in practice, any number of supportive feedback types 
can be supported, subject to the complexity of the model. 

 

Figure 1: Multi-branch Multi-Layer Perceptron Model. Best 

viewed in color 

Finally, we merge the output of multiple branch networks by a fully 
connected layer, which generates the output of the whole M-MLP 
model. In consideration of the sparsity of our data, and in order to 
prevent the model from overfitting, we use ReLU as the activation 
function in each layer. More precisely, our M-MLP model is defined 
as follows, where (2) and (3) show the forward propagation in each 
branch from the second layer to the L-th layer. Equation (4) shows 
the fusion of branches representing different implicit feedbacks, 
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u
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i
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T
, L represents the number of layers of each 

MLP branch network, and wx
t , bx

t
, and σx

t  denote the weight matrix, 
bias vector, and activation function for the x-th layer of each branch 
perceptron, respectively. Particularly, we define t∈

{Target, typeA, typeB, typeC} , and y
L

{t}
= (y

L

{Target}
, y

L

{typeA}
, 

y
L

{typeB}
, y

L

{typeC}
), and concat represents the concatenation operation 

of different branch networks. It should be noted that during the 
training phase, the parameter updates of different branch networks 
are asynchronous. For the target feedback, the parameter update is 
performed on the interaction data of each user and item. For the 
supportive feedback branches, the parameters are updated only 
when there is feedback for this type behavior between users and 
items, otherwise they are not updated. 

3.4 Fusing MF and M-MLP 

In previous subsections, we have discussed two different models MF 
and M-MLP to learn the interaction relationships between users and 
items, capturing both linearity and nonlinearity aspects. So far, MF 
and M-MLP are still two independent components, so how to make 
full use of the strengthen of the two is of particularly critical. 

In order to provide enhanced modeling capacity, we propose an 
ensemble network architecture to fuse MF and M-MLP. Specifically, 
we assign a latent factor vector to each user and item for MF 
component and M-MLP component respectively. That is, each user 
and item has a latent representation for MF and a latent 
representation for M-MLP (see Fig. 2). Equation (5) shows that the 
output of MF component is obtained by conducting the element-
wise product of the corresponding latent factor vectors: 



 ŷ
MF

=p
u
MF∙q

i
MF , (5) 

where 𝑝𝑢
𝑀𝐹 and 𝑞𝑖

𝑀𝐹 denote the user and item latent factor vectors 
for MF part. Similarly, the output of M-MLP component is 
calculated as follows: 
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Figure 2: Our ensemble network architecture. Gradient color 

represents multiple supportive branches. Best viewed in color 

where p
u
MLP and q

i
MLP denote the user and item latent factor vectors 

for M-MLP part. Note that the dimensionality of the latent factor 
vector of MF and M-MLP may not share the same size, which is 
more flexible to characterize different latent aspects of the two 
different models. Finally, MF component and M-MLP component 
are fused by concatenating the corresponding output, which is then 
feed into another MLP (a fully connected layer) to combine the 
linearity of MF and nonlinearity of M-MLP to model complex user-
item interaction relationships. Equation (7) shows how the two 
components are fused by a fully connected layer. 

 ŷ
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=σ(wT [
ŷ
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The entire model can be optimized with the standard neural network 
back-propagation algorithm. We find Adam algorithm [26] 
produces the best results, which will be demonstrated in the next 
section. 

4 EXPERIMENTS 

In this section, we conduct extensive experiments over a real dataset 
to demonstrate the effectiveness of our proposed architecture. 

4.1 Experimental Settings 

We use Taobao user behavior data [21, 22], where we randomly 
select about 20 thousand users. Four types of implicit feedback are 
extracted from the data, i.e., clicking, purchasing, adding item to 
shopping cart and item favoring. Each record of the data represents 
a user-item interaction, consisting of user ID, item ID, feedback type 
and timestamp. TABLE 1 summarizes the statistics of the dataset 
after preprocessing. 

We compare the proposed approach with the following 
representative methods: 

Table 1: Statistics of the dataset after preprocessing 

UserBehavior dataset 

Users# Item# Feedback type# Records# 

19576 629758 4 2003670 

1) BPR: This model [25] optimizes MF model with a pairwise 

ranking loss, which is tailored to learn from implicit feedback. 

2) MFPR: Based on BPR, this model [19] integrates explicit 

feedback and multiple implicit feedback. Since rating information is 

not available in the dataset, we only adapt implicit feedback 

modeling part of this model in our comparison study. 

3) WMF: This model [7] treats the feedback as the indication of 

positive and negative preference associated with vastly varying 

confidence levels. 

4) NCF: This model [12] replaces the inner product with a neural 

architecture that can learn an arbitrary function from data. Similar 

to our approach, both MF and Multi-layer perceptron are leveraged 

to learn the user-item interaction functions, but the network is 

designed to handle a single type of implicit feedback. 

In the experiments, every model focuses on predicting a user’s next 
purchase behavior. BPR, WMF and NCF only rely on historical 
purchase data to build model, while our approach and MFPR 
leverages all four types of feedback. 

In order to compare the performance of the models, we adopt the 
widely-used leave-one-out evaluation strategy [26, 32, 34]. For each 
user, we extract her latest interaction for testing, and use the 
remaining interaction records as the training set. Since it is too time-
consuming and impractical to rank all items for every user during 
evaluation, we followed the common strategy [12] that randomly 
samples 99 items that are not interacted by the users. We combined 
the 99 items and test item to get the final predicted rankings. We use 
Hit Ratio (HR) and Normalized Discounted Cumulative Gain 
(NDCG) [28] to evaluate the performance of the models. 
Specifically, HR@10 intuitively measures whether the test item is 
present on the top-10 recommendations, and the NDCG@10 
measures the ranking quality which assigns higher scores to hits at 
top position ranks. We calculate all above two metrics for each test 
user and report their average scores.  

Our approach is implemented using PyTorch (https://pytorch.org/). 
For model initialization, we randomly initialized neural network 
parameters like weights and biases with a Gaussian distribution 



(with a mean of 0 and standard deviation of 0.01). The model is 
optimized with mini-batch Adam [26]. We set the batch size to 1, 
and set the learning rate to 0.001. All experiments were conducted 
on a NVIDIA TITAN X Pascal GPU. 

4.2 Design Validation 

We first demonstrate how the accuracy of our approach varies with 
different dimensionality of the latent factor vector. For simplicity, 
we assume MF component and M-MLP component share the same 
embedding size. As summarized in TABLE 2, our model achieves 
better performance when the number of factors increases from 2 to 
4, indicating more factors improves the modeling capacity. The 
performance starts slightly decreasing when the factor number 
becomes further larger. This is because the network becomes over-
complicated with more factors, causing the overfitting issue. 

Table 2: Results for our model with different factors 

Factors 2 4 8 16 32 

HR@10 0.2739 0.2759 0.2695 0.2623 0.2546 

NDCG@10 0.1638 0.1664 0.1646 0.1631 0.1566 

We next apply different negative sampling ratios to study how the 
negative sampling strategy influences the recommendation 
performance. The results are summarized in TABLE 3, where ng-x 
indicate x negative instances are sampled for each positive instance. 
We observe that higher negative sampling ratio boosts the 
performance, but too many negative instances may introduce sample 
noises and decreases the accuracy. In our experiments, our model 
achieves the best performance when the number of negative samples 
is set to 3. 

In our model, the MLP component models user-item interactions 
through neural network with hidden layers. We finally investigate 
how the number of hidden layers impacts our model. Fig. 3 shows 
when different number of layers is applied, how the performance of 
our model evolves with different training iterations. We observe 
from the figure that stacking more layers are beneficial to 
performance, and our model with 2-layers achieves the best 
performance. This result indicating the effectiveness of using deep 
learning based models for collaborative filtering. Again, controlling 
neural network complexity, i.e., the number of layers is important to 
avoid overfitting issues.  

Table 3: Results for our model with different negative sampling 

ratios 

HR@10 

Factors 4 8 16 

ng-1 0.2694 0.24 0.2291 

ng-2 0.2735 0.2643 0.242 

ng-3 0.276 0.2733 0.2565 

ng-4 0.2759 0.2728 0.2543 

 

NDCG@10 

Factors 4 8 16 

ng-1 0.1665 0.1534 0.1499 

ng-2 0.1663 0.1634 0.1523 

ng-3 0.1654 0.1639 0.159 

ng-4 0.1664 0.163 0.1558 

 

 

 

Figure 3: Performance of our model w.r.t. the number of layers 

in neural network 

4.3 Performance Comparison 

In this subsection, we compare the proposed approach with the 
representative models. For our approach, optimal parameters are 
configured as demonstrated in previous subsection. Parameters of 
other models such as latent factor vector dimensionality are set 
following original papers; if certain parameters are not mentioned in 
original papers, they are tuned by cross-validation. Noted that we 
run each method for 10 times and report the average scores; standard 
error is also calculated (range from 0.0050 to 0.0085) to demonstrate 
the comparison is statistically significant. 

TABLE 4 shows the performance comparison in terms of HR@10 
and NDCG@10. The baseline models BPR and WMF performs 
similarly. To be specific, WMF is slightly better in terms of HR@10, 
while BRP outperforms WMF when NDCG is used, indicating 
BPR’s pairwise ranking loss is more beneficial to ranking task. By 
integrating multiple types of implicit feedback, MFPR consistently 
outperforms BPR and WMF, proving the importance of using 
multiple implicit feedback. On the other hand, deep learning based 
models NCF and our approach significantly outperforms the 
traditional methods that rely on MF model only, demonstrating that 
deep neural network is capable of capturing more complex latent 
aspects of user-item interaction structure. Although both NCF and 
our approach utilize MF and deep neural networks to model user-
item interactions, NCF relies on only one type of implicit feedback 
while our approach makes use of all four types of feedback. 
Therefore, experimental results show that our approach outperforms 
NCF in terms of both HR@10 and NDCG@10. In particularly, 
when HR@10 is used, our approach improves NCF by 11.8%.  

Table 4: Results of hr@10 and ndcg@10 with different methods. 

Methods MFPR BPR WMF NCF 
Our 

approach 
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HR@10 0.2426 0.2296 0.2315 0.2500 0.2795 

NDCG@10 0.1568 0.1505 0.1485 0.1670 0.1673 

 

5 CONCLUSION 

In this work, we propose an end-to-end learning framework to 
integrate multiple implicit feedback to boost top-N personalized 
recommendation. MF and MLP are leveraged to capture the linearity 
and non-linearity of the complex user-item interaction relationships 
respectively. An ensemble architecture is designed to merge MF 
component and MLP component to further improve modeling 
capacity. Extensive experiments on real world dataset confirm the 
superiority of our approach. As for future directions, we intend to 
investigate more advanced deep neural network techniques such as 
attention mechanisms to improve recommendation performance. 
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